Novel ω-conotoxins from C. catus reverse signs of mouse inflammatory pain after systemic administration
نویسندگان
چکیده
BACKGROUND Antagonists of N-type voltage-gated calcium channels (VGCC), Ca(v)2.2, can manage severe chronic pain with intrathecal use and may be effective systemically. A series of novel ω-conotoxins that selectively inhibit N-type VGCCs was isolated from Conus catus. In the present study, the potency and reversibility of ω-conotoxins CVID, CVIE and CVIF to inhibit N-type calcium currents were investigated in mouse isolated dorsal root ganglion (DRG) neurons. The systemic potency of each ω-conotoxin to reverse signs of mouse chronic inflammatory pain was also compared. RESULTS In DRG neurons, the rank order of potency to inhibit N-type calcium currents was CVIE > CVIF > CVID. After subcutaneous administration, CVID and CVIE, but not CVIF, partially reversed impaired weight bearing in mice injected with Freund's complete adjuvant (CFA) three days prior to testing. No side-effects associated with systemic administration of ω-conotoxins were observed. CONCLUSIONS The present study indicates a potential for CVID and CVIE to be developed as systemically active analgesics with no accompanying neurological side-effects.
منابع مشابه
ω-Conotoxins GVIA, MVIIA and CVID: SAR and Clinical Potential
Highly selective N-type voltage-gated calcium (CaV) channel inhibitors from cone snail venom (the ω-conotoxins) have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Earlier in 2005, Prialt (Elan) or synthetic ωconotoxin MVIIA, was the first ω-conotoxin to be approved by Food and Drug Administration for human use. This review compares the action of three...
متن کاملContribution of the Nucleus Cuneiformis to the Antinociceptive Effects of Systemic Morphine on Inflammatory Pain in Rats
Introduction: The role of midbrain reticular formation, which includes the nucleus cuneiformis (NCF), as a crucial antinociceptive region in descending pain modulation has long been investigated. In this study, we tried to highlight the role of NCF in morphine-induced antinociception in formalin-induced pain model in rats. Methods: A total of 201 male Wistar rats weighing 260-310 g were used in...
متن کاملIntrathecal α-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain.
The large diversity of peptides from venomous creatures with high affinity for molecules involved in the development and maintenance of neuropathic pain has led to a surge in venom-derived analgesic research. Some members of the α-conotoxin family from Conus snails which specifically target subtypes of nicotinic acetylcholine receptors (nAChR) have been shown to be effective at reducing mechani...
متن کاملNovel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes.
omega-Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new omega-conotoxins (CVIA-D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other omega-conotoxins, CVID has a novel loop 4 sequen...
متن کاملOmega-Conotoxins as Experimental Tools and Therapeutics in Pain Management
Neuropathic pain afflicts a large percentage of the global population. This form of chronic, intractable pain arises when the peripheral or central nervous systems are damaged, either directly by lesion or indirectly through disease. The comorbidity of neuropathic pain with other diseases, including diabetes, cancer, and AIDS, contributes to a complex pathogenesis and symptom profile. Because m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013